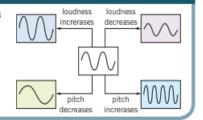
Science - Waves

Properties of waves

- . A wave is an oscillation or vibration which transfers energy from one place to another
- . Amplitude the distance from the middle to the top of bottom of the wave
- Wavelength the distance between a point on the wave to the same point on the next wave
- . Trough The bottom of the wave
- . Peak The top of the wave
- . Frequency How many waves pass a fixed point per second, measured in Hertz (Hz)

There are two main types of waves:

Transverse waves, e.g. light


- Travel at 90°direction of energy transfer
- . Do not need a medium to travel through

Longitudinal waves, e.g. sound

- Travel in the direction of energy transfer
- · Need a medium to travel through

Sound waves

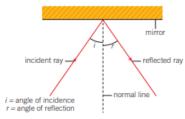
- Sound waves are caused by the vibration of particles, sound travels quicker in a solid than a gas as the particles are closer together
- Oscilloscopes display sound waves on a screen
- Humans can hear between 20–20000 hertz (Hz), but other animals have different ranges of hearing
- Sound waves above 20000 Hz are known as ultrasound, thesesound waves are too high pitched for humans to hear

amplitude (m) wavelength (m)

Hearing

- The pinna directs sound along the auditory canal to the eardrum which will vibrate
- The vibration from the ear drum moves onto the ossicles which amplifies the sound
- This passes the sound to the cochlea where tiny hairs detect the vibrations and passes this along to the auditory nerve as electrical signals for our brain

Colour

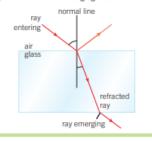

white

- Light can be split using a prism and is made up from different colours of light
- Primary colours

 can be mixed in order
 to form secondary
 colours
- Objects appear a certain colour as they absorb all other colours of light, but reflect the colour of light which they appear.

Reflection

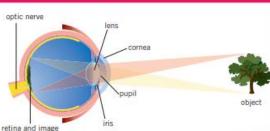
 The law of reflection states that the angle of incidence will be equal to the angle of reflection



- For light reflecting off a smooth surface will form an image is called specular reflection
- Reflection off of a rough surface will not form an image and is know as diffuse scattering

Refraction

- Refraction occurs when a wave passes between two different substances
- This happens as the wave will travel at different speeds in the different materials
- When the wave passes into a more dense material from a less dense material it will bend towards the **normal**, e.g. air into glass
- When the wave passes into a less dense material from a more dense material it bends away from the normal e.g. glass to air



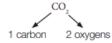
Key words and Vocabulary

Amplitude – angle of incidence – angle of reflection – auditory canal – auditory nerve – diffuse – scattering – eardrum – frequency – hertz – law of reflection – lens – longitudinal – normal – oscillation – oscilloscope – peak – photoreceptors – primary – colour – refraction – secondary colour – specular – reflection – transverse – trough – ultrasound – wave – wavelength

Light and the eye

- Light entering your eye is refracted by the lens, focusing it on the retina and creating an inverted image
- Photoreceptors detect the light hitting your retina and send an electrical impulse to your brain
- If the light is not focussed on the retina or the eye, people cannot see properly
- Long sighted people have the light focus behind the eye, short sighted people have the light in front of the retina.
- Lenses can be used to refract the light in a way in which it will focus on the retina.

Science - Matter

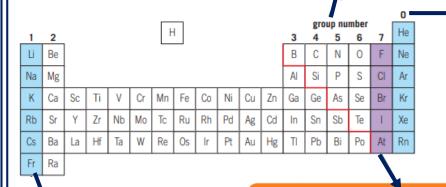

Elements and atoms

- An element is a substance that only contains one type of atom, it is found on the Periodic Table
- Each element has it's own unique chemical symbol which is the same in every language, these are also found on the Periodic Table
- An atom is the smallest part of which an element can be broken down into
- As there are around 100 types of elements that can occur naturally, there are around 100 different atoms

Compounds

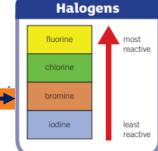
- Compounds are formed when two or more different elements chemically bond together
- The compound will have different physical properties to the elements which make up the compound, for example water is a liquid, but it made from oxygen and hydrogen which are both gases
- Compounds are hard to separate and need a chemical reaction to do this
- When naming a compound, we always mention the metal first and the non metal second
- The name of the metal will not change but the name of the non metal will, for example oxygen can change to oxide
- Chemical formulae tells us how many atoms of each element are in the compound in relation to each other

1 carbon 4 hydrogens


 The small number tells us the number of each element which is in front of the number

Polymers

- Polymers are long chains of groups of atoms which are repeated many times
- Natural polymers are not man-made and include wool, cotton, starch and rubber
- Synthetic polymers are man-made and include polythene, polystyrene and nylon


Groups and periods

- · Groups are the columns in the Periodic Table, they go downwards
- Periods are the rows in the Periodic Table, they go sideways
- Elements in the same group normally follow the same trends in properties such as melting point, boiling
 point and reactivity
- . By placing these elements into these groups, scientists can make predictions about their properties

Group 0

- Group 0 elements are known as the noble gases
- They are all non metals with low melting and boiling points, meaning all are gases at room temperature
- The boiling point decreases going down the group
- All of the group 0 elements are unreactive
- When electricity is passed through the gas, they emit a brightly coloured light, this can be seen in neon signs

Group 1

- Group 1 elements are also known as the alkali metals
- . They share similar properties with other metals such as:
- Being shiny when freshly cut
- Being good conductors of electricity and heat
- Group 1 metals are much softer than other metals and also have much lower melting and boiling points
- Group 1 elements react with water to form alkali solutions
 - lithium + water → lithium hydroxide + hydrogen metal + water → metal hydroxide + hydrogen
- The further down the group that the metal is, the more vigorous the reaction will be. This is called a trend
- Another trend seen in Group 1 is with the boiling and melting points: the further down the group, the lower the boiling and melting points are

- Group 7 elements are also known as the halogens
- They share similar properties with other non metals such as:
- · Having low melting and boiling points
- Not conducting electricity
- Moving down the groups the elements have an increased melting and boiling point

Group 7

The halogens also react in a similar way to one another, for example with iron:

iron + chlorine → iron chloride

iron + bromine → iron bromide

- Halogens can undergo **displacement reactions**, this is where a more reactive halogen will take the place of a less reactive halogen
- The most reactive halogens are at the top of the group, and the least reactive halogens are at the bottom of the group
- If the most reactive halogen is on its own, it will take the place of the less reactive halogen in a compound

calcium bromide + chlorine → calcium chloride + bromine

Key words and Vocabulary

Atom - alkali metals - compound - displacement reaction - element - group - Group 1 - Group 7 - Group 0 - halogen - noble gas - period - Periodic Table - physical - properties - polymer - trend

